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Abstract
In this paper, we discuss the bi-Hamiltonian formulation of the (rational XXX)
Gaudin models of spin–spin interaction, generalized to the case of sl(r)-valued
‘spins’. We only consider the classical case, using recent results concerning
the quantum models as guiding principles. In particular, we focus on the
so-called homogeneous XXX models. We find a pencil of Poisson brackets
that recursively define a complete set of integrals of the motion, alternative
to the set of integrals associated with the ‘standard’ Lax representation of
the Gaudin model. These integrals, in the case of su(2), coincide with the
Hamiltonians of the ‘bending flows’ in the moduli space of polygons in the
Euclidean space introduced by Kapovich and Millson. We finally address
the problem of separability of these flows and explicitly find separation
coordinates and separation relations for the sl(2) case.

PACS numbers: 45.20.Jj, 02.30.Ik, 75.10.Pq
Mathematics Subject Classification: 70H06, 37K10, 70H20

1. Introduction

In [13], Gaudin proved the integrability of N-site su(2) (quantum) spin Hamiltonians of
the form

H =
N∑

j<l=1

cj − cl

aj − al

(
σx

j σ x
l + σ

y

j σ
y

l + σ z
j σ z

l

)
(1.1)

for any choice of the arbitrary parameters aj and cj (ai �= aj , ci �= cj , i �= j). Here, H is an
operator acting on the Hilbert space of states of the model,

V = V1 ⊗ V2 ⊗ · · · ⊗ VN
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where Vj is a copy of the spin 1/2 representation of SU(2), σx, σ y, σ z are standard Pauli
matrices and, e.g., σx

j stands for the operator

σx
j = 1 ⊗ · · · ⊗ σx ⊗︸ ︷︷ ︸

j th place

1 · · · ⊗ 1.

The property of integrability follows from the fact that one can write the Gaudin Hamiltonian
H as

H =
N∑

j=1

cjHj with Hj =
∑
l �=j

1

aj − al

(
σx

j σ x
l + σ

y

j σ
y

l + σ z
j σ z

l

)
(1.2)

and check that the Hj define a set of N − 1 commuting observables. Since fixing the values
of the N Casimirs

Cj = σx
j σ x

j + σ
y

j σ
y

j + σ z
j σ z

j

the system has N degrees of freedom, the N − 1 quantities Hj , together with, e.g.,
Sz = ∑N

i=1 σ z
i , provide a complete set of mutually commuting observables.

A relevant member of this class of Hamiltonians, whose classical counterpart will be the
main subject of the present paper, is obtained when one chooses ck to be proportional to ak

for all k, so that, up to a rescaling, the Hamiltonian (1.1) becomes

H = 1

2

N∑
j,l=1

(
σx

j σ x
l + σ

y

j σ
y

l + σ z
j σ z

l

)
. (1.3)

Following [3] we will refer to the model described by H as the XXX rational homogeneous1

Gaudin model.
This system is not only integrable, but maximally super-integrable. One can understand

this stronger property as follows (see, e.g [16]): since the ‘physical’ Hamiltonian (1.3) is
independent of the parameters, the choice of the ak in the definition of the commuting integrals
Hj is arbitrary (provided ai �= aj , i �= j ). So, choosing another set of parameters bk �= ak and
considering H̃ l = ∑

l �=j
1

bj −bl

(
σx

j σ x
l + σ

y

j σ
y

l + σ z
j σ z

l

)
one can define the two sets of complete

commuting quantities:

{H,H1, . . . , HN−2, Sz} {H, H̃ 1, . . . , H̃N−2, Sx}.
Since for generic choices of the sets ak, bk the observables

{H,H1, . . . , HN−2, H̃ 1, . . . , H̃N−2, Sz, Sx}
are algebraically independent, the model is indeed maximally super-integrable.

Recently it was pointed out independently by various authors [5, 19], that with (1.3) it
is possible to associate a set of commuting integrals independent of the parameters. Such
operators are of the form:

Ik−1 = 1

2

k∑
j,l=1

(
σx

j σ x
l + σ

y

j σ
y

l + σ z
j σ z

l

)
k = 2, . . . , N (1.4)

and, together with Sz they form a complete set of involutive integrals for H.
The classical counterpart of the su(2) XXX homogeneous Gaudin model is the following

Hamiltonian system. We consider as phase space the N-fold Cartesian product of the
Lie–Poisson manifold associated with su(2) which we parametrize by means of N Hermitian
1 The name homogeneous refers to the fact that the interaction between the spins is the same for all pairs of interacting
‘sites’. Possibly an equally good name could be ‘uniform Gaudin model’.
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2 × 2 matrices A1, . . . , An. The entries of such matrices can be seen as coordinates
on our Poisson manifold. On this phase space, the Gaudin Hamiltonian is given by
H = 1

2

∑N
j �=l=1 Tr(Aj · Al). The (Hamilton) equation of motion associated with H via the

standard Lie–Poisson structure (see section 2.1) has the simple Lax form:

d

dt
Al = i


Al,

N∑
j=1

Aj


 l = 1, . . . , N where i = √−1. (1.5)

The property of integrability (and super-integrability) of this classical system can be proved
mutatis mutandis exactly as that of its quantum counterpart, considering the quantities
Hj = ∑

l �=j

Tr(Al ·Aj )

aj −al
, H̃ j = ∑

l �=j

Tr(Al ·Aj )

bj −bl
and the global invariance under the group SU(2).

The classical version of the integrals (1.4), namely

Ik−1 = 1

2
Tr


( k∑

i=1

Ai

)2

 k = 2, . . . , N (1.6)

was recently considered, in a completely different context, by Kapovich and Millson [18].
These authors (see also [12]) studied the moduli space of (N + 3)-sided polygons in R

3, and
(implicitly) showed that it coincides with a suitable Marsden–Weinstein quotient (with respect
to the diagonal action of SU(2)) of the phase space of the N + 3 site su(2)-Gaudin models.
They remarked that such a space possesses a natural Hamiltonian structure, and integrated,
via action-angle variable methods, the flows associated with the integrals Ik−1, k = 2, . . . , N .
It is worthwhile to remind the intriguing representation of such flows: if one draws, from a
chosen vertex, the N possible diagonals of an (N + 3)-sided polygon, the flow associated with
the Hamiltonian Ik geometrically represents the bending of one side of the polygon along the
kth diagonal (the other side being kept fixed), whence the name of ‘bending flows’.

The Gaudin system (1.1) admits various generalizations. Gaudin himself pointed out that
the integrals (1.2) can be generalized to any semisimple Lie algebra g. Clearly, if the rank of g

is greater than 1, the number of such integrals is not enough to ensure complete integrability.
The missing integrals have been shown by Jurčo [17] and Sklyanin [29] to be provided by the
spectral invariants of a suitable Lax matrix, whose classical counterpart is

Lrat =
N∑

i=1

Ai

λ − ai

(1.7)

where ai �= aj , i �= j and the Ai are generic elements of g. In terms of the Lax matrix (1.7)
the generalization of the Hamiltonian (1.3) reads

HG =
N∑

i=1

res|λ=ai

1

2
Tr
(
λL2

rat

) = 1

2

∑
j �=i

Tr(AiAj ). (1.8)

Another straightforward generalization of this model is obtained by adding a constant
matrix κ to the Lax matrix, yielding

L
(κ)
rat = κ +

N∑
i=1

Ai

λ − ai

. (1.9)

In the su(2) case, this is equivalent to adding to the Hamiltonian (1.3) a term describing the
interaction of the spins with a magnetic field with a constant direction in each site but with
different intensity, that is, to consider the Hamiltonian

H ′
G = 1

2

∑
j �=i

Tr(AiAj ) +
∑

i

ai Tr(κ · Ai). (1.10)
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We will call this function the Hamiltonian of the ‘inhomogeneous’ (XXX) Gaudin magnet.
The complete integrability and separability of these systems, (for the g = sl(n) case) were
studied and proved in [30, 14, 28].

The aim of this paper is to frame the analysis of the Gaudin models, as well as of
the Hamiltonians (1.6) of the bending flows of Kapovich and Millson, in the scheme of bi-
Hamiltonian geometry as advocated by Gel’fand and Zakharevich [15], and to show how one
can use this scheme to explicitly integrate the model for g = sl(2). We will consider only the
classical models, and consider the complexified case (that is, we will study the Gaudin system
associated with a complex semisimple Lie algebra g).

Our first task will be to briefly show how, using nowadays standard results of the theory
of r-matrices on loop algebras (see, e.g., [27]), one can provide the phase space of the
(inhomogeneous) Gaudin magnet with a bi-Hamiltonian structure, selecting it out of a multi-
parameter family of Poisson structures. This structure gives rise, according to the Gel’fand–
Zakharevich (GZ) scheme, to the integrals associated with the Lax matrices of Jurčo and
Sklyanin (1.7), (1.9).

Then we will construct, in the homogeneous case, another bi-Hamiltonian structure,
non-compatible (in a sense to be precised later) with the above-mentioned family, whose GZ
analysis gives rise, in the sl(2) case, to the parameter-independent integrals (1.6). Since such
additional bi-Hamiltonian structure is still constructed within a Lie-theoretical setting, we will
be able to straightforwardly apply this scheme to g = sl(r), with arbitrary r. In this way, we
will be able to find a sufficient number of commuting integrals to be added to the ‘generalized
bending Hamiltonians’ Ik , yielding a complete family of integrals alternative to the ‘standard’
family obtained by Sklyanin and Jurčo.

The GZ analysis of such a model will finally lead us to introduce a kind of Lax matrices for
such flows and to show that the Hamilton–Jacobi equations associated with the sl(2) bending
Hamiltonians are separable by computing explicitly the separation variables and the separation
relations.

2. GZ analysis of Gaudin models

The GZ scheme [15] for integrating a bi-Hamiltonian system can be seen as a particularly
efficient scheme to implement the Lenard–Magri recursion for manifolds endowed with a pair
of compatible Poisson brackets none of which is symplectic (i.e., non-degenerate).

One considers a manifold M endowed with a pair of compatible Poisson tensors
P1 − λP0, or, in other words, a pencil of Poisson brackets

{f, g}λ = {f, g}P1 − λ{f, g}P0 = 〈df, (P1 − λP0) dg〉 (2.1)

(where 〈·, ·〉 is the canonical pairing between T ∗M and T M), and assumes that the kernel of
the generic element of the Poisson pencil is k dimensional. Let C1, . . . , Ck be independent
Casimir functions of P0. The GZ method, roughly speaking, suggests to use these Casimirs as
‘starting’ elements for Lenard chains yielding (under some technical additional conditions),
via the method of bi-Hamiltonian iteration, families of functions

{
H(a)

m

}m=0,...

a=1,...,k
, such that for

any function F on M, and a = 1, . . . , k,{
F,H(a)

m

}
P0

= {
F,H

(a)
m−1

}
P1

with H
(a)
0 = Ca. (2.2)

As a consequence of the bi-Hamiltonian iterative scheme and of the fact that all Lenard
chains start with a Casimir function of P0 (they are ‘anchored’, in the language of [15]),
all these functions are mutually in involution with respect to both Poisson brackets.
Obviously, the maximal number of independent functions one may hope to get in this way
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is Nmax = 1
2 (dim M + k). If this is indeed the case, the geometric scheme hereafter outlined

defines families of completely integrable systems in the Liouville sense. Indeed, let us suppose
that the GZ method provides us with k families of mutually commuting independent functions

{
H(a)

m

}m=0,...,na

a=1,...,k
with

k∑
a=1

na = 1

2
(dim M + k).

Let H be a generic element in the ring generated by such commuting functions, and let
XH = P0 dH be the corresponding Hamiltonian vector field. Let us consider a generic
symplectic leaf S ⊂ M of P0; it is a ds = dim M − k dimensional manifold, with
the natural symplectic form induced by the Poisson structure P0. XH clearly restricts
to S, and, as a consequence of the bi-Hamiltonian iteration on M, comes equipped with
1
2 (dim M + k) − k = 1

2dS integrals in involution, given by the restriction to S of the functions{
H(a)

m

}m=1,...,na

a=1,...,k
. As a consequence of the genericity assumption on the symplectic leaves,

these functions will be independent of S as well and give the complete family of involutive
integrals required by the Liouville theorem.

The aim of this section is to frame the (general, that is, inhomogeneous) Gaudin model
within the bi-Hamiltonian scheme, and to reinterpret its complete integrability within the
theoretical framework of the GZ analysis briefly sketched above. The manifolds we will
consider will be Cartesian products of N copies of a Lie algebra g, and the Poisson structures
will always be linear structures on gN . We will frame our study in the general scheme
concerning the multi-Hamiltonian structure of polynomial pencils of matrices that can be
found in [27]. In particular, in this section we will constantly rely on the commutativity
property of the spectral invariants of such polynomial pencils of matrices, whose proof can
be found in the above-mentioned paper. Some details of such a theory closely related to the
bi-Hamiltonian approach pursued in the present paper can be found in [26].

We will hereafter mostly limit ourselves to state results and sketch proofs. Our main task
will be to choose a specific bi-Hamiltonian structure2 for the Gaudin models, and to explicitly
study the associated GZ polynomials, generalizing to the N particle and arbitrary simple g

case the results, exposed in [11], concerning the three-particle sl(2)-case.

2.1. Notation and conventions

Let us briefly recall the notion of Lie–Poisson brackets associated with a Lie algebra and fix
some notation and conventions we will use throughout the paper.

If g is a Lie algebra, its dual g∗ comes equipped with the standard Lie–Poisson structure:

{F,G}(A) = 〈A, [dF, dG]〉 = 〈dF,P dG〉 F,G ∈ C∞(g∗). (2.3)

If g is semisimple we can identify g∗ with g. Indeed, we can associate a matrix XA with any
element A ∈ g∗ considering, e.g., the fundamental representation of the algebra g, and taking
the trace form as a bilinear non-degenerate pairing

〈A,XB〉 = Tr(XA · XB).

From now on we will implicitly use this identification, and write A,B . . . instead of
XA,XB, . . . for simplicity of notation. Using the cyclicity of the trace, the Hamiltonian
vector field associated by (2.3) with a smooth function F is represented by

P dF = Ȧ =
[
A,

∂F

∂A

]
2 A different scheme to provide Gaudin models with a bi-Hamiltonian structure has recently appeared in the
literature [25].
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where the symbol ∂F
∂A

denotes the matrix satisfying, for any � in g,

F(A + t�) = F(A) + t · Tr

(
∂F

∂A
· �

)
+ o(t).

If we take the direct product of N copies of g, the standard Lie–Poisson structure becomes

{F,G}(A1, . . . , AN) =
N∑

i=1

〈
Ai,

[
∂F

∂Ai

,
∂G

∂Ai

] 〉
(2.4)

and the Hamiltonian vector field associated with a function F is

Ȧi =
[
Ai,

∂F

∂Ai

]
i = 1, . . . , N.

We can write the above equation in the form

∂Ai

∂t
= (XF )i = (P dF)i =

∑
j,k

pijk

[
Ak,

∂F

∂Aj

]
with pijk = δij δjk. (2.5)

We will also often write P (and other Poisson tensors) representing its action on the differential
of a function by means of the matrix symbolic form:




Ȧ1

Ȧ2

...

ȦN


 =




[A1, .] 0 . . . 0

0 [A2, .] . . . 0

...
...

...

0 0 . . . [AN, .]


 ·




∂F

∂A1

∂F

∂A2

...

∂F

∂AN




. (2.6)

For this reason, we will term the standard Lie–Poisson tensor P on gN the diagonal Poisson
tensor.

2.2. A bi-Hamiltonian structure of the Gaudin model

A bi-Hamiltonian structure for rational Gaudin models can be obtained using the following
argument. Let us consider the map {Ai} −→ {Bi} that sends the rational Lax matrix

L
(κ)
rat = κ +

N∑
i=1

Ai

λ − ai

in the polynomial Lax matrix

L
(κ)
poly = λNκ +

N−1∑
i=0

Biλ
i =

(
N∏

i=1

(λ − ai)

)
· L

(κ)
rat (2.7)

given explicitly by

Bl = (−1)N−l−1
N∑

i=1

sN−l−1(a1, . . . , âi , . . . , aN) · Ai + (−1)N−lsN−l (a1, . . . , aN) · κ

l = 0, . . . , N − 1 (2.8)

where sk(a1, . . . , aN) denotes the kth elementary symmetric polynomial in the variables
a1, . . . , aN .
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On the space of polynomial pencils of matrices a family of mutually compatible Poisson
brackets are defined [27, 20]. They will be termed, for the sake of brevity, RSTS tensors. In a
nutshell, this family can be described by stating that there is a map from degree N polynomials
in the variable λ to the set of Poisson structures on the manifold of polynomial Lax matrices
of the form (2.7) which sends the monomials λ0, . . . , λN into N + 1 fundamental Poisson
brackets, �l, l = 0, . . . , N . In our case, the fundamental tensors �l can be represented by
matrices having the following block-diagonal structure:

�l =
(

Cl 0
0 Dl

)
(2.9)

with {
(Cl)ij = −[Bi+j−l−1, ·] i, j = 1, . . . , l

(Dl)ij = [Bi+j+l−1, ·] i, j = 1, . . . , N − l
(2.10)

Bi = 0 if i < 0 or i > N and BN = κ.

Lemma 1. In the ‘coordinates’ B0, . . . , BN−1, κ , the diagonal Poisson tensor P (2.6) is given
by the sum

P =
N∑

l=0

(−1)N−l−1sN−l (a1, . . . , aN)�l (2.11)

where the si are the elementary symmetric polynomials in the ai , that is, it is the tensor
associated with the polynomial

pN =
N∏

i=1

(λ − ai).

This lemma can be proved by means of a direct computation. For the reader’s convenience,
we collect its main steps in appendix A.

Since the Poisson tensors (2.9) form a (N + 1)-parameter family of compatible Poisson
tensors, we can choose as a second Poisson tensor a suitable linear combination of them to
have a bi-Hamiltonian structure on gN . Let

Q =
N−1∑
l=0

(−1)N−lsN−l−1(a1, . . . , aN)�l (2.12)

be the tensor associated with the polynomial

pN−1 =
(pN

λ

)
+

= λN−1 − s1λ
N−2 + · · · + (−1)NsN−1.

All the integrals of motion that one can obtain from the spectral invariants of the Lax matrix
(1.9) can be obtained by the GZ method applied to the pencil Q − λP ; in fact it holds (see,
also, [27]).

Lemma 2. All the vector fields associated with the spectral invariants of (1.9) are bi-
Hamiltonian with respect to the pair Q − λP .

Proof. We find convenient to work in the variables Bi . Let us define:

K(i)
α = Tr

(
Resλ=0

((∑N
j=1 Bjλ

j
)α

λi

))
i = 1, . . . , αN α = 2, . . . , rk(g).

(2.13)
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For any fixed α, the αN functions (2.13) fulfil the relations [27]:

�i dK(j) = �i+k dK(j+k) = X(j−i). (2.14)

From (2.14) it follows that X(i) = 0 if i � 0 or i > N(α − 1); in fact, if i � 0 then
K(i) = 0 and X(i) = �0 dK(i) = 0, while if i > N(α − 1), then K(N+i) = const and
X(i) = �N dK(N+i) = 0. Now let us set

bl = (−1)N−l+1sN−l (a1, . . . , aN) (2.15)

we have

P dK(j) =
N∑

l=0

bl�l dK(j) =
N∑

l=0

blX
(j−l)

Q dK(j) =
N∑

l=1

bl�l−1 dK(j) =
N∑

l=1

blX
(j−l−1).

Then

P dK(j)
α − Q dK(j+1)

α = b0X
(j)
α .

If one of the ai is equal to zero, then b0 = ∏N
i=1 ai = 0 and the proof is concluded. Otherwise

we need to find a function F
(j)
α such that

Q dF (j)
α = b0X

(j)
α .

We proceed by induction. If j = 1, we have b0X
(1)
α = Qb0

b1
dK(1)

α , so that F (1)
α = b0

/
b1K

(1)
α .

Now let F (i)
α be such that: b0X

(i)
α = Q dF (i)

α , i = 1, . . . , j − 1. Then

Q
b0

b1
dK(j)

α = b0X
(j)
α +

b0b2

b1
X(j−1)

α + · · · +
b0bN

b1
X(j−N+1)

α

�⇒ b0X
(j)
α = Q

(
b0

b1
dK(j)

α − b2

b1
dF (j−1)

α − · · · − bN

b1
dF (j−N+1)

α

)
.

So we have

Q dF (j)
α = b0X

(j)
α with F (j)

α = b0

b1
K(j)

α − 1

b1

N−1∑
i=1

bi+1F
(j−i)
α . (2.16)

�

Some observations on the GZ sequences are in order. The starting points of the GZ sequences
are given by the Casimirs of P. We have to distinguish two cases:

(a) If b0 �= 0, i.e. all the ai are different from zero, then the Casimirs of P are given in terms
of the spectral invariants (2.13) by the following expressions:

Ci,α =
αN∑
j=1

a
j

i K
(j)
α i = 1, . . . , N α = 2, . . . , rk(g). (2.17)

For any α, starting the GZ sequences from suitable linear combinations of the Casimirs
Ci,α we can construct N GZ sequences of length α − 1 (i.e. defining α − 1 independent
vector fields) each starting with a Casimir of P and ending with a Casimir of Q.

(b) If b0 = 0 then only one among the ai , say aN , is zero. In this case, equation (2.17) defines
(rk(g) − 1)(N − 1) independent Casimirs, instead of (rk(g) − 1)N :

Ci,α =
αN∑
j=1

a
j

i K
(j)
α i = 1, . . . , N − 1 α = 2, . . . , rk(g). (2.18)
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The functions (2.18) turns out to be simultaneous Casimirs for both P and Q. The remaining
rk(g) − 1 Casimirs of P (the rank of P is obviously the same in both cases) are given by

CNα
= K(1)

α α = 2, . . . , rk(g). (2.19)

With each Casimir (2.19) is associated a GZ sequence of length (α − 1)N .

3. The homogeneous case

The constant term κ in the Lax matrix (1.9) physically describes the coupling of the ith spin
with an ‘external magnetic’ field βi = aiκ . The matrix κ in the definition of the rational Lax
matrix (1.9) is somewhat a free parameter in the theory. Changing κ amounts to ‘changing the
direction’ of this magnetic field. The choice usually made in the literature is the generic one
(say, κ is a diagonal matrix with different entries); this ensures the functional independence of
the coefficients of the spectral invariants of L

(κ)
rat , whence the fact that they are in a sufficient

number to yield complete integrability of the model.
If κ is not generic, but the dimension of its stabilizer gκ := {τ ∈ g s.t. [τ, κ] = 0} is

greater than the rank of g the following happens. Not all the spectral invariants of the Lax
matrix are functionally independent, but one can recover the ‘missing’ integrals noting that
the functions:

Fτ = Tr

(
N∑

i=1

Aiτ

)
τ ∈ gκ

commute with all the spectral invariants of L
(κ)
rat .

However, something more substantial occurs for κ = 0, that is, in the homogeneous case.
As we have recalled in the introduction, in such a case HG (1.8) defines, for g = sl(2), a
super-integrable Hamiltonian system and, in particular, it is possible to find another complete
set of commuting first integrals which are not explicitly dependent on the parameters ai .

From now on we will focus on this additional family of integrals, that, in the classical
N-site sl(2) model can be given by the very simple formula:

Il−1 =
l∑

j,k=1

Tr(Aj · Ak) l = 2, . . . , N. (3.1)

We will introduce further a Poisson structure R on the manifold gN . As we shall show it
will be possible to combine it with the diagonal Poisson structure P of equation (2.6) to get
a further Poisson pencil, not belonging to the RSTS family described in section 2. The GZ
method applied to the Poisson pencil R−λP will give rise to these new sets of integrals. Since
everything will be done in a Lie-algebraic setting, these results hold for a generic semisimple
Lie algebra, and in particular, for sl(r) with arbitrary r.

3.1. The additional bi-Hamiltonian pencil

Let us consider the bivector R, defined, by means of the constructions outlined in section 2 by
the following matrix:

R =




0 [A1, ·] · · · [A1, ·]
[A1, ·] [A2 − A1, ·] · · · [A2, ·]

...
...

. . .
...

[A1, ·] [A2, ·] · · · [(N − 1)AN − ∑N−1
i=1 Ai, ·]


 . (3.2)
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Proposition 3.1. The bivector R defined by (3.2) is a Poisson bivector, and it is compatible
with the diagonal Poisson tensor P.

Proof. Linearity and antisymmetry are obvious, so we must prove only the Jacobi identity.
Also, we can limit ourselves to prove the assertions for the case of linear functions on g. If
F,G,H are such functions, identifying their differentials with the three N-tuples of matrices
{αi}, {βi}, {γi}, (e.g., ∂F

∂Ai
= αi, . . . ), the Poisson bracket is defined by

{F,G}R = 〈dF,R dG〉 =
∑
i,j,k

rijk Tr(αi[Ak, βj ]) =
∑
i,j,k

rijk Tr(Ak[βj , αi])

rijk = (k − 1)δij δjk − θ(i−k)δij + θ(j−i)δik + θ(i−j)δjk

where δ is the usual Kronecker symbol and θ is the discrete Heaviside function, normalized as

θ(i) =
{

1 if i > 0
0 if i � 0.

The Jacobi identity reads

{H, {F,G}R}R + {F, {G,H }R}R + {G, {H,F }R}R =
∑

i,j,k,l,m

rijkrlmj (Tr(Ak[[βm, αl], γ i])

+ Tr(Ak[[αm, γl], βi]) + Tr(Ak[[γ
m
, βl], αi]))

which, renaming the indices, becomes∑
i,j,k,l,m

rijkrlmj Tr(Ak[[β
m
, αl], γi]) + rmjkrilj Tr(Ak[[αl, γi], βm])

+ rljkrmij Tr(Ak[[γi, βm], αl]).

A sufficient condition for the last expression to be zero is that for any k it holds that∑
j

rijkrlmj =
∑

j

rmjkrilj . (3.3)

In fact, a consequence of (3.3) to hold implies that tiklm = ∑
j rijkrlmj is invariant for cyclic

permutations of the indices i, l, m. So, if (3.3) holds we can write:

{H, {F,G}R}R + {F, {G,H }R}R + {G, {H,F }R}R
=

∑
i,k,l,m

tiklm Tr(Ak([[βm
, αl], γi] + [[αl, γi], βm] + [[γi, βm], αl]))

which vanishes thanks to the Jacobi identity in g.
Let us show that (3.3) holds in our case. By means of algebraic manipulations, namely

cycling through i, l, m and renaming the indices using the Kronecker’s δ, we obtain

∑
j

rijkrlmj −
∑

j

rmjkrilj = δikδlm


(l − i)θ(l−i)

∑
j

θ(j−i)θ(l−j)




+ δilδmk


(i − m)θ(i−m) +

∑
j

θ(j−m)θ(i−j)


 + δlm[θ(i−k)(θ(l−i) − θ(l−k))

+ θ(l−k)θ(i−l)] + δil[θ(m−k)(θ(i−k) − θ(i−m)) − θ(i−k)θ(m−i)] + δik[θ(l−i)(θ(m−l)

− θ(m−i)) + θ(m−i)θ(l−m)] + δmk[θ(l−m)(θ(i−m) − θ(i−l)) − θ(i−m)θ(l−i)].



Gaudin models and bending flows: a geometrical point of view 11665

Using the identities∑
j

θ(j−i)θ(l−j) = (l − i − 1)θ(l−i)

θ(i−k)(θ(l−i) − θ(l−k)) + θ(l−k)θ(i−l) = −θ(l−k)δil

we see that every term cancels out.
We now prove that R is compatible with the diagonal tensor P. The characteristic condition

for the compatibility of two Poisson tensors is

{H, {F,G}P }R + {H, {F,G}R}P + cyclic permutations of F,G,H = 0.

Recalling that {F,G}P = ∑
i,j,k δij δjk Tr

(
Ak

[
∂G
∂Aj

, ∂F
∂Ai

])
, one shows that a sufficient condition

for the compatibility of R and P is that the quantity

siklm =
∑

j

(rijkδlmδmj + δij δjkrlmj )

be invariant under cyclic permutations of the indices i, l, m for all k. Actually,

siklm = (k + i)δikδlmδil − θ(i−k)δlmδil + θ(i−m)δlmδkl + θ(m−l)δikδil + θ(l−m)δikδim

manifestly satisfies this property. �

Remark. By the previous proposition, we can endow, for every N, the space (g∗)N with a bi-
Hamiltonian structure Pλ = R − λP . A natural question arises, that is what is the connection
with the RSTS family of Poisson structures discussed in section 2. We do not have yet a
complete answer to this point; however, as we will show in appendix B, the new tensor R is
not compatible with the generic element of the RSTS family (2.9).

3.2. The Lenard chains

We construct the Lenard chains for the Poisson pencil R − λP , using the GZ recipe discussed
in section 2. To shorten the notation we define

Bl =
l−1∑
i=1

Ai F
(α)
β,l = resλ=0

1

λα+1
(λAl + Bl)

β (3.4)

H
(α)
β,l = Tr

(
F

(α)
β,l

)
. (3.5)

We will first find a kind of ‘modified’ recursion relation.

Lemma 3. It holds that

P dH
(α−1)
β,l = (R − (l − 2)P ) dH

(α)
β,l (3.6)

for α = 1, . . . , β.

Proof. We proceed by induction on β. If β = 2 we have

H
(0)
2,l = Tr

(
B2

l

) ⇒ ∂H
(0)
2,l

∂Aj

= 2θ(l−j)Bl

H
(1)
2,l = 2 Tr(AlBl) ⇒ ∂H

(1)
2,l

∂Aj

= 2θ(l−j)Al + Blδjl

H
(2)
2,l = Tr

(
A2

l

) ⇒ ∂H
(2)
2,l

∂Aj

= 2Alδjl .
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By direct computation we obtain(
(R − (l − 2)P ) dH

(2)
2,l

)
i
= 2(θ(l−i)[Ai,Al] + δil[Ai, Bi]) = (

P dH
(1)
2,l

)
i(

(R − (l − 2)P ) dH
(1)
2,l

)
i
= 2θ(l−i)[Ai, Bl] = (

P dH
(0)
2,l

)
i
.

We use the inductive hypothesis in the case α � β − 1. Plugging in the following identities:

[
Bl, F

(α)
β−1,l

]
+
[
Al, F

(α−1)
β−1,l

] = 0 (3.7)

∂H
(α)
β,l

∂Aj

= θ(l−j)

∂H
(α)
β,l

∂Bl

+ δjl

∂H
(α)
β,l

∂Al

(3.8)

∂H
(α)
β,l

∂Aj

= θ(l−j)F
(α)
β−1,l + Bl

∂H
(α)
β−1,l

∂Aj

+ δjlF
(α−1)
β−1,l + Al

∂H
(α−1)
β−1,l

∂Aj

(3.9)

∂H
(α)
β,l

∂Al

= ∂H
(α−1)
β,l

∂Bl

(3.10)

and using the inductive hypothesis, one obtains by straightforward computation

P dH
(α−1)
β,l − (R − (l − 2)P ) dH

(α)
β,l = 0.

The case α = β can be easily verified by direct computation.
Note that identities (3.7) and (3.8) follow from (3.4) and (3.5). The identity (3.9) follows

from the recursive formula for F
(α)
β,l :

F
(α)
β,l = BlF

(α)
β−1,l + AlF

(α−1)
β−1,l

F
(0)
0,l = 1

F
(α)
β,l = 0 if α > β or α < 0

while (3.7) can be proved again by induction. For α = 2 it holds that

∂H
(2)
2,l

∂Al

= 2Al = ∂H
(1)
2,l

∂Bl

∂H
(1)
2,l

∂Al

= 2Bl = ∂H
(0)
2,l

∂Bl

.

Then, if α � β − 1 we can use the inductive hypothesis and get

∂H
(α)
β,l

∂Al

− ∂H
(α−1)
β,l

∂Bl

= Bl

(
∂H

(α)
β−1,l

∂Al

− ∂H
(α−1)
β−1,l

∂Bl

)
+ Al

(
∂H

(α−1)
β−1,l

∂Al

− ∂H
(α−2)
β−1,l

∂Bl

)
= 0.

The case α = β is again a matter of simple computation. �

Proposition 3.2. The Hamiltonians

K
(β−k)

β,l =
k−1∑
j=0

(
k − 1

j

)
(l − 2)k−j−1H

(β−j−1)

β,l

(3.11)
K

(β)

β,l = H
(β)

β,l l = 2, . . . , N

satisfy the standard Lenard–Magri relations P dK
(α−1)
β,l = R dK

(α)
β,l , α = 1, . . . β,∀β.
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Proof. Using lemma 3, we have

R dK
(β−k)

β,l = P d


k−1∑

j=0

(
k − 1

j

)(
l − 2)k−j−1H

(β−j−2)

β,l + (l − 2)k−jH
(β−j−1)

β,l

)

= P d


K

(β−k−1)

β,l +
k−1∑
j=1

[(
k − 1

j − 1

)
+

(
k − 1

j

)]
(l − 2)k−jH

(β−j−1)

β,l




= P d


 k∑

j=0

(
k

j

)
(l − 2)k−jH

(β−j−1)

β,l


 = P dK

(β−k−1)

β,l .

�

3.3. Complete integrability for g = sl(r)

In this section we will prove that in the case g = sl(r), the Hamiltonians (3.5) together with
additional integrals one can recover from the global SL(r) invariance of the model, define a
completely integrable Hamiltonian system. We start by remarking that the content of lemma 3
and proposition 3.2 can be rephrased as follows: if we introduce the N matrices:

L1 = A1 La = λAa + Ba a = 2, . . . , N (3.12)

then they evolve isospectrally along any of the vector field of the hierarchy, that is (since the
matrices Ai are generically simple) along Lax-type equations.

The dimension of the manifold M = sl(r)N is dM = (r2 − 1)N , and the dimension of
the generic symplectic leaf of P is dS = dM − N(r − 1) = r(r − 1)N . We note that we
recover (as expected) all the Casimirs of P considering: (a) the spectral invariants of L1 = A1

(this gives N − 1 common Casimirs), and (b) the higher order terms in expansions of Ll :
H

(α)
α,l , α = 2, . . . , r, l = 2, . . . , N . Since it holds that H

(0)
β,l = ∑β

k=0 H
(k)
β,l−1, we consider

the set

H
(α)
β,l β = 2, . . . , r α = 1, . . . , β − 1.

This provides us with a distinguished sequence of r(r−1)

2 mutually commuting Hamiltonians.

Clearly, if l �= l′, the sets
{
H

(α)
β,l

}
and

{
H

(α)
β,l′

}
are functionally independent, since they depend

on a different set of variables. So, the counting of the number of independent Hamiltonians
boils down to computing the counting of independent coefficients in the determinant

det(µ − λA + B) A,B ∈ sl(r).

This problem was solved in [7], (see, also, [1]) and, actually, the number is exactly r(r−1)

2 .
Hence, the Lenard sequences associated with R − λP provide us with a total number
of (N − 1) r(r−1)

2 commuting Hamiltonians, plus the N(r − 1) Casimirs. For complete
integrability we are missing r(r − 1)/2 more commuting integrals.

They are associated with the global SL(r) invariance of the problem, and, in the bi-
Hamiltonian picture, can be described as follows. For every τ ∈ sl(r) we can consider the
linear function

Hτ = Tr

(
N∑

i=1

Aiτ

)
.

The Lenard ‘sequence’ associated with such functions is somewhat peculiar; indeed, since
R dHτ = (N − 1)P dHτ , we can associate with each Hτ a Lenard diagram which is (up to a
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constant) a closed loop, to be compared with the usual ladder typical of iterable Hamiltonians.
However, the usual argument of bi-Hamiltonian recurrence, shows that, for any τ ,{

K
(α)
β,l , Hτ

}
P

= {
K

(α)
β,l , Hτ

}
R

= 0 ∀ α, β, l.

Indeed, one has, e.g., the equality:{
K

(α)
β,l , Hτ

}
P

= {
K

(α+1)
β,l , Hτ

}
R

= (N − 1) · {K(α+1)
β,l , Hτ

}
P
.

This argument shows how to recover, in the bi-Hamiltonian formalism, the integrals associated
with the global SL(r) invariance of the model. Clearly, this family of r2 − 1 integrals is not a
commutative one.

To recover the maximal Abelian subalgebra inside the Poisson algebra generated by the
functions Hτ , one can consider (see, e.g., [6]):

(a) The r − 1 independent elements Hh1 , . . . , Hhr−1 associated with, say, the standard Cartan
subalgebra of sl(r);

(b) The Gel’fand–Zetlin invariants, that is, the Casimirs of the nested subalgebras

sl(2) ⊂ sl(3) ⊂ · · · ⊂ sl(r) (3.13)

under the map sl(r)N → sl(r) sending the N-tuple {A1, . . . , AN } into the total sum,
Atot = ∑N

i=1 Ai .

Noting that the Gel’fand–Zetlin functions corresponding to the last element of the chain (3.13)
are given by

∑β

k=0 H
(k)
β,N , we obtain r − 1 +

∑r−1
i=2 (i − 1) = r(r−1)

2 additional commuting
integrals, which is exactly the number of commuting integrals we were looking for to ensure
complete integrability of the model.

We end this section with a comment concerning super-integrability of the model. To
this end we remark that we have at our disposal two Poisson pencils to construct families
of commuting integrals for the Gaudin (homogeneous) Hamiltonian HG: the pencil R − λP

and the pencil3 Q − λP , described in section 2. On the dN,r = N(r(r − 1))-dimensional
generic symplectic leaves of P they give rise to two distinct dN,r/2 families of integrals of
the motion K

lj
m and K̃

lj
m. Direct computations (which we performed for r = 3, 4 and N � 6)

suggest that the number of functionally independent elements in the union of the two families
is dN,r − (r −1). In other words, also taking into account the integrals coming from the global
SL(r) invariance of the model, we have super-integrability for the sl(r) Gaudin model, that,
however, is maximal only for the sl(2) case.

4. Separation of variables for the sl(2) case

We consider now the N-particle sl(2) case. The aim is to show that the Hamilton–Jacobi
equations associated with the Hamiltonians

Ha = Tr


Aa ·

a−1∑
j=1

Aj


 a = 2, . . . , N (4.1)

and, in particular, the Hamilton–Jacobi equations associated with the physical Hamiltonian
HG = 1

2

∑N
i=1 Hi are separable in a very ‘simple’ set of coordinates. Our analysis is based on

the so-called bi-Hamiltonian scheme for separation of variables (SoV), recently introduced in
the literature (see, e.g., [22, 2, 8]). In particular, we will use the results for systems with an
arbitrary number of (anchored) Lenard chains exposed in [10].
3 With the proviso in mind that one has to set κ = 0 in those formulae.
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We consider the manifold M = sl(2)N , endowed with the Poisson pencil R − λP ,
explicitly parametrized with the N matrices

Ai =
[
hi fi

ei −hi

]
. (4.2)

The generic symplectic leaf S of P is a 2N -dimensional symplectic manifold, defined by
the equations

Ci = 1
2 Tr A2

i = h2
i + eifi i = 1, . . . , N

and can be (generically) endowed with the 2N coordinates {hi, fi}i=1,...,N .
According to the bi-Hamiltonian scheme [9], one modifies the tensor R in order to obtain

a second compatible structure on S. Let us define the N vector fields

Zi = 1

fi

∂

∂ei

(4.3)

and, for any pair of functions F,G on M, the following brackets:

{F,G}R′ = {F,G}R −
N∑

a=2

({F,Ha}P Za(G) − {G,Ha}P Za(F )) (4.4)

where X(F) denotes the Lie derivative of F with respect to the vector field X.
Thanks to the specific form of the vector fields Za , these new brackets restrict to S and

give rise to Poisson brackets on S, which are compatible with the ones naturally induced by P.
So, S is a symplectic manifold with respect to the restriction of the brackets associated with
P, and is endowed with a (1, 1) tensor N , with vanishing Nijenhuis torsion defined by

N = R′ ◦ P −1.

In such a geometrical setting, the bi-Hamiltonian scheme for SoV considers sets of coordinates
{ui, vi} (called Nijenhuis coordinates) associated with the eigenvalues λi of N , characterized
by the equations:

N ∗ dui = λi dui N ∗ dvi = λi dvi (4.5)

whose Poisson brackets attain the remarkable form [21, 15]:

{ui, uj }P = {ui, uj }R′ = {vi, vj }P = {vi, vj }R′ = 0
(4.6)

{ui, vj }P = δijϑi(ui, vi) {ui, vj }R′ = λi{ui, vj }P
for some functions ϑi(ui, vi).

We shall prove the above statements directly displaying a set of Nijenhuis coordinates on
the symplectic leaves of P.

Proposition 4.1. The 2N functions

λ1 =
N∑

i=1

fi λa = −
∑a−1

k=1 fk

fa

+ (a − 2) a = 2, . . . , N

µ1 =
N∑

i=1

hi µa = (λa − (a − 2))ha +
a−1∑
k=1

hk a = 2, . . . , N

(4.7)

provide a set of Nijenhuis coordinates on S. In particular, the λa, a = 2, . . . , N are the
non-vanishing eigenvalues of N ∗, while λ1 and µ1 span its (two-dimensional) kernel.
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Proof. According to equation (4.4) and the definition of the Nijenhuis tensor N , noting that
both P and R′ restrict to S and that Za(λi) = Za(µi) = 0 for a = 2, . . . , N, i = 1, . . . , N , we
have to show that, for any coordinate xi , (that is, xi = ei, hi, fi, i = 1, . . . , N ) it holds that

{xi, λ1}R −
N∑

a=2

{Ha, λ1}P Za(xi) = 0

(4.8)

{xi, λb}R −
N∑

a=2

{Ha, λb}P Za(xi) − λb{xi, λb}P , b = 2, . . . , N

as well as

{xi, µ1}R −
N∑

a=2

{Ha,µ1}P Za(xi) = 0

(4.9)

{xi, µb}R −
N∑

a=2

{Ha,µb}P Za(xi) = λb{xi, µb}P , b = 2, . . . , N.

The proof that these equations hold true is a matter of direct computations. One simply has to
plug the explicit expressions of the Poisson brackets

{hi, ej }P = δij ej {hi, fj }P = −δijfj {ei, fj }P = 2δijhj

{hi, ej }R = δij

[
(i − 1)ei −

i−1∑
k=1

ek

]
+ θ(i−j)ej + θ(j−i)ei

{hi, ej }R = −δij

[
(i − 1)fi −

i−1∑
k=1

fk

]
− θ(i−j)fj − θ(j−i)fi

{ei, fj }R = 2

{
δij

[
(i − 1)hi −

i−1∑
k=1

hk

]
+ θ(i−j)hj + θ(j−i)hi

}

into equations (4.8) and (4.9), and use the identities
n−1∑
j=1

δij = θ(n−i)

n−1∑
j=1

θ(j−i)Fj = θ(n−i)

n−1∑
j=i+1

Fj (4.10)

n−1∑
j=1

θ(i−j)Fj = (θ(i−n) + δin)

n−1∑
j=1

Fj + θ(n−i)

i−1∑
j=1

Fj . (4.11)

For example, let us consider xi ≡ hi . Since Za(hi) = 0, we have (for n � 2):

{hi, λn}P = (λn − n + 2)δin + θ(n−i)

fi

fn

and

{hi, λn}R = 1

fn

n−1∑
j=1

{
δij

[
(i − 1)fi −

i−1∑
k=1

fk

]
+ θ(i−j)fj + θ(j−i)fi

}

+
λn − n + 2

fn

{
δin

[
(i − 1)fi −

i−1∑
k=1

fk

]
+ θ(i−n)fn + θ(n−i)fi

}

= λn

(
δin(λn − n + 2) + θ(n−i)

fi

fn

)
thanks to identities (4.10), (4.11).
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The other cases of equations (4.8), (4.9) are proved with similar computations. �

To construct a set of canonical Nijenhuis coordinates (usually considered in the bi-
Hamiltonian scheme for SoV and quite naturally termed Darboux–Nijenhuis coordinates)
{λi, φi}i=1,...,N from the Nijenhuis coordinates {λi, µi}i=1,...,N one notes that an explicit
computation gives

{λ1, µ1} = −λ1 {λa, µa} = (λa − (a − 2))(λa − (a − 1)) a = 2, . . . , N. (4.12)

Indeed, the first equation is trivially verified; for the remaining set of N − 1 relations one has

{µn, λn} = − 1

fn

{
n−1∑
i=1

hi,

n−1∑
i=1

fi

}
− (λn − (n − 2)){hn, 1/fn}

n−1∑
i=1

fi

=
∑n−1

i=1 fi

fn

− (λn − (n − 2))

∑n−1
i=1 fi

fn

= (λn − (n − 2))(λn − (n − 1)).

Hence, one can choose

φ1 = −
∑N

i=1 hi∑N
i=1 fi

φa = µa

(λa − (a − 2))(λa − (a − 1))
a = 2, . . . , N (4.13)

to have, together with the λi a set of Darboux–Nijenhuis coordinates.
To find the separation relations, we make contact with the so-called Sklyanin magic

recipe [31]. To this end, we modify the Lax matrices (3.12), by a suitable shift in the spectral
parameter λ. Namely we define

L̃1 = L1 L̃a = (λ − (a − 2))Aa +
a−1∑
b=1

Ab a = 2, . . . , N. (4.14)

We note that the spectral invariants of L̃a are combinations of the Hamiltonians H
(α)
β,l and of

the common Casimirs we considered in section 3.3, and provide an equivalent set of involutive
constants of the motion (together with H1 = ∑

hi).
As one can easily note, the Nijenhuis coordinates λa, a = 2, . . . , N are nothing but

the zeroes of the (1, 2) entry of the Lax matrix L̃a of equation (4.14), while the Nijenhuis
coordinates µa, a = 2, . . . , N are the values for λ = λa of the (1, 1) entry of the same matrix.
Taking into account that µ1 is the first Hamiltonian H1, we see that the Nijenhuis coordinates,
the Hamiltonians and the Casimirs Ci = Tr(Ai)

2 are related by the separated equations:

µ1 − H1 = 0 Det

(
µa −

(
(λa − (a − 2))Aa +

a−1∑
i=1

Ai

))
= 0 (4.15)

whence one can directly find, using relations (4.13), the ‘canonical’ separation relations for
the Hamilton–Jacobi equation associated with the sl(2) Gaudin Hamiltonians. We note that
these are quadratic equations in the separated coordinates, and hence explicitly solvable by
elementary functions, for every number of sites N.

5. Summary and comments

In this paper, we have used tools from bi-Hamiltonian geometry to study the integrability of
the classical rational XXX Gaudin models, associated with the Lie algebra sl(r). We first
framed the general (that is, inhomogeneous) model within the Gel’fand–Zakharevich scheme
by selecting a suitable pencil of Poisson brackets induced by a natural family of Poisson
brackets on the space of matrix polynomials.
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Then we extensively studied the homogeneous case. We considered an alternative
complete set of mutually commuting constants of the motion Ik (independent of the parameters
usually entering the formulation of Gaudin models). These integrals (actually, a subfamily
thereof ), in the su(2) case, coincide with the Hamiltonians of the bending flows of Kapovich
and Millson on the moduli space of polygons in the Euclidean space.

We introduced an ‘additional’ Poisson tensor which forms, together with the standard Lie–
Poisson tensor, a bi-Hamiltonian pencil. The GZ analysis of such a bi-Hamiltonian structure
provides exactly the alternative set of constants of the motion Ik for the sl(2) case. By using
such a bi-Hamiltonian scheme, we extended this analysis to the sl(r) case; in particular, we
show that the higher rank counterparts of the additional set of integrals guarantee complete
integrability of the sl(r)-Gaudin magnet. Since, we still have at our disposal the Jurčo–
Sklyanin integrals, we conclude that the Gaudin magnet is super-integrable (although we
could not establish maximal super-integrability) also in the sl(r) case.

We furthermore have explicitly shown in the sl(2) case that the Hamilton–Jacobi equations
associated with the set of additional integrals can be solved by separation of variables, using
the bi-Hamiltonian scheme for SoV which has recently been considered in the literature.
Actually, what we found is a set of separation coordinates alternative to the ‘standard’ one
found by Sklyanin and the ‘Montreal group’, based on the standard Lax representation for the
(homogeneous) Gaudin model. This should not be regarded as a surprise, since it is well known
that super-integrability is related to the existence of different sets of separation coordinates. In
this set of coordinates, the Hamilton–Jacobi equations can be explicitly solved by elementary
functions, or, otherwise stated, the separation coordinates (for the sl(2)-magnet) live on genus
0 spectral curves for any number of particles, while, in the ‘standard picture’, the genus of the
spectral curve grows linearly with N.

This result, and in particular the fact that separation coordinates are rational functions
of the ‘physical’ coordinates can be seen as the counterpart of the fact that the model is,
although by means of a non-completely trivial transformation, amenable to the study of nested
subsystems, each of those is equivalent to a two-particle system [4]. This is particularly
clear in the su(2) quantum case, where the spectra of the commuting parameter-independent
Hamiltonians can be computed by means of Lie-algebraic methods (namely, the representation
theory of su(2)) [23, 24].

Finally we would like to add the following comment. We are not in a position yet to
make a clearcut connection between the bi-Hamiltonian structure R − λP we introduced
in the present paper, and the solution of the quantum (homogeneous) sl(r) Gaudin models.
However, the fact that, for the classical model, we managed to construct the complete family
of involutive integrals (3.11) that admit a simple Lie-algebraic characterization, suggests
that the involutivity property of such distinguished functions might survive quantization
and provide a set of quantum integrals of motion whose diagonalization could possibly
be obtained without resorting to Bethe ansatz techniques. Work in this direction is in
progress.
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Appendix A

In this appendix we sketch the proof of lemma 1. Actually we will prove the converse
statement, i.e., that the image of the Poisson tensor (2.11) under the map (2.8) is the diagonal
Poisson tensor (2.6).

We denote with J the Jacobian of the transformation:

Jij = ∂Bi−1

∂Aj

= (−1)N−i sN−i (a1, . . . , âj , . . . , aN). (A.1)

Using the identity:

N∑
j=1

xj−1(−1)N−j sN−j (a1, . . . , âk, . . . , aN) =
∏
l �=k

(x − al) (A.2)

the inverse matrix of (A.1) is easily obtained:

(J−1)ij = a
j−1
i∏

k �=i (ai − ak)
. (A.3)

We have

(J−1PJ−1)t )in = (−1)N∏
m�=i (ai − am)

∏
p �=n(an − ap)

(
P

(1)
in − P

(2)
in

)
(A.4)

with

P
(1)
in =

N−1∑
r=0

N∑
l=r+1

(−1)lsN−l (a1, . . . , aN)

l∑
k=r+1

ar+l−k
i ak−1

n [Br, ·] (A.5)

P
(2)
in =

N∑
r=1

r−1∑
l=0

(−1)lsN−l (a1, . . . , aN)

r∑
k=l+1

ar+l−k
i ak−1

n [Br, ·]. (A.6)

Subtracting (A.5) and (A.6), by using induction and the identities

si(a1, . . . , aN+1) = si(a1, . . . , aN) + aN+1si−1(a1, . . . , aN)
(A.7)

si(a1, . . . , aN) = 0 if i < 0 or i > N

N∑
l=0

(−1)lsN−l (a1, . . . , aN)xl = (−1)N
N∏

i=1

(x − ai) (A.8)

one proves that the coefficient of Br in formula (A.4) vanishes if i �= n.
Now let us consider the diagonal terms

P
(1)
ii − P

(2)
ii =

N∑
r=0

(
ar

i

N∑
l=0

(−1)lsN−l (a1, . . . , aN)(l − r)al−1
i [Br, ·]

)
.

Since

N∑
l=0

(−1)lsN−l (a1, . . . , aN)lal−1
i = (−1)N

d

dx


∏

j

(x − aj )



∣∣∣∣∣∣
x=ai

= (−1)N
∏
j �=i

(ai − aj )
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we get (using (2.8) and (A.2)):

P
(1)
ii − P

(2)
ii = (−1)N

∏
j �=i

(ai − aj )

N∑
r=0

ar
i [Br, ·] = (−1)N


∏

j �=i

(ai − aj )


2

[Ai, ·]

whence the assertion.

Appendix B

Lemma 4. The Poisson tensors Q (2.12) and R (3.2) are not compatible for N � 3 for any
choice of the parameters a1, . . . , aN .

Proof. An explicit computation shows that the Poisson tensor Q can be written in the
‘coordinates’ {A1, . . . , AN } as

{F,G}Q =
∑
i,j,k

qijk Tr

(
Ak

[
∂G

∂Aj

,
∂F

∂Ai

])

with

qijk = (−1)N
{
δij

(
ξj δjk + βj

(1 − δjk)

ηjk

)
+

(βiδjk − βjδik)

ηji

}

ηij =
{
ai − aj if i �= j

1 if i = j
βi =

∏
k �=i

ak

ηik

ξi =
∑
j �=i

βj

ηji

.

Using this expression it is easy to evaluate the Schouten bracket of Q,R on the differentials
of the functions

F = Tr(A1h) G = Tr(A2x) H = Tr(A2h)

where with x and h we denoted two constant matrices satisfying [h, x] = x. We have

[Q,R]S(dF, dG, dH) = (−1)N


ξ2 − ξ1 +

(β1 − β2)

η21
+ β2

N∑
j=3

1

η2j


Tr(A1x)

+ β1

N∑
k=3

1

ηk1
Tr(Akx). (B.1)

A necessary condition for (B.1) to vanish is that β1 = 0, i.e., one of the constants a2, . . . , aN

must be equal to zero. Let us suppose ak = 0, k > 2; then

[Q,R]S(dF, dG, dH) = (−1)N
(

1

a2
− 1

a1

)
Tr(A1x) �= 0

since a1 �= a2.
In the case a2 = 0, we have instead

[Q,R]S(dF, dG, dH) = (−1)N Tr(A1x)

N∑
j=3

1

aj

. (B.2)

If N = 3 then (B.2) is different from zero, so we can assume N > 3. But if a2 = 0 and N > 3
we can consider

F ′ = Tr(A1h) G′ = Tr(A2x) H ′ = Tr(A3h).
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Since

[Q,R]S(dF ′, dG′, dH ′) = (−1)N+1 1

a3
Tr(A1x) �= 0

the proof is concluded. �
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